Fuzzy K-Means Using Non-Linear S-Distance
نویسندگان
چکیده
منابع مشابه
A K-means Algorithm with a Novel Non-Metric Distance
In this paper, we propose a new clustering algorithm to cluster data. The proposed algorithm adopts a new non-metric measure based on the idea of “symmetry”. The detected clusters may be a set of clusters of different geometrical structures. Three data sets are tested to illustrate the effectiveness of our proposed algorithm.
متن کاملGene Expression Analysis Using Fuzzy K-Means Clustering
The recent advances of array technologies have made it possible to monitor huge amount of genes expression data. Clustering, for example, hierarchical clustering, self-organizing maps (SOM), kmeans clustering, has become important analysis for such gene expression data. We have applied the Fuzzy adaptive resonance theory (Fuzzy ART) [5] to the gene clustering of DNA microarray data and the clus...
متن کاملImage Segmentation Using Two Weighted Variable Fuzzy K Means
Image segmentation is the first step in image analysis and pattern recognition. Image segmentation is the process of dividing an image into different regions such that each region is homogeneous. The accurate and effective algorithm for segmenting image is very useful in many fields, especially in medical image. This paper presents a new approach for image segmentation by applying k-means algor...
متن کاملGenetic Approach for Fuzzy Mining Using Modified K-Means Clustering
A fuzzy-genetic data-mining algorithm for extracting both association rules and membership functions from quantitative transactions is shown in this paper. It used a combination of large 1-itemsets and membershipfunction suitability to evaluate the fitness values of chromosomes. The calculation for large 1itemsets could take a lot of time, especially when the database to be scanned could not to...
متن کاملEmotion Recognition using Fuzzy K-Means from Oriya Speech
Communication will be intelligible when conveyed message is interpreted in right-minded. Unfortunately, the rightminded interpretation of communicated message is possible for human-human communication but it’s laborious for humanmachine communication. It is due to the inherently blending of non-verbal contents such as emotion in vocal communication which leads to difficulty in human-machine int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2910195